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model and directed walks, we  prove, via finite size scaling, that the length scale exponents 
vll and are related by vII =2v, in all dimensions. 

The ferroelectric five-vertex (or the modified KDP) model (SVM) (figure l (a) )  is one 
of the simplest models in the class of exactly solvable two-dimensional vertex models 
[ 1,2]. Attempts have recently been made to  study them in higher dimensions b y  defining 
the model o n  appropriate lattices as, e.g., the diamond lattice in its 110 orientation 
[3]. Such a generalization is warranted not only for complete understanding of these 
models, hut also because of the usefulness, mainly through the equivalent directed 
walk (DRW) representation (figure l ( b ) )  [1,3], in various contexts such as the com- 
mensurate-incommensurate (a) (Pokrovsky-Talapov) transition [ 5 ]  biomembrane 
phase transition [6-91, polymers in random media [lo], flux lattice melting in high 7, 
superconductors [ 121, anyons [ 1 I], dimer models [ 1,131 etc. The question of perennial 
interest is 'what are the thermal length scale exponents for SVM?' 

It is known from the exact finite size scaling analysis [I41 and correlation functions 
[15] of the isomorphic Kasteleyn dimer model [9, 131 that the model is anisotropic, 
requiring two length scale exponents vII parallel to the ground state polarization 

direction, with ull  = 1 and uL =$. A simple minded scaling analysis was used in [3] to 
propose that these numbers are independent of dimensions. Here we prove by an 
essential use of the finite size scaling (FSS) theory [I61 that U , [ =  ZU, for all dimensions. 
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Figure 1. ( a )  The arrow configurations for the five vcrtex model (SVM).  ( b )  the equivalent 
line configurations with the thick (dashed) line representing the presence (absence) of a 
line, ( c )  the energy of the vertex. 
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We use the DRW analogy in our analysis. In fact, DRWE appear implicitly in Lieb’s 
solution of the general six-vertex models [Z] via the Bethe ansatz, though the method 
cannot be generalized to higher dimensions. In contrast, our continuum path integral 
approach is in principle valid for all dimensions though at the cost of foregoing the 
underlying lattice structure, not so great a price if universlity is to be trusted. We point 
out only the relevant features here, referring the reader to the literature for details 
[ 1,3,7,8,9]. (i) The nth excited state of ~ V M  consists of n mutually avoiding directed 
walks so that the temperature or f ( T -  Tc)/ T, determines the density p of the walks 
(per unit tranverse volume), (ii) the loss in entropy due to the non-overlapping 
constraint is responsible for the nontrivial critical behaviour, (iii) the length of each 
walk is the size of the lattice in the z direction and (iv) the density is related to I 
through the incommensuration exponent 8, 

p - t p  (1) 
with p= 1/2 in two dimensions. 

theory [12], is 
The continuum model used in [3] and [4], in analogy with the flux lattice melting 

where r,(z) is the d’(=d-1)-dimensional co-ordinate of the point at contour length 
z of chain a each of length N, n being the total number of chains. The first term on 
the RHS of (2) is the usual entropic contribution (or the elastic energy) of the polymers, 
while the second term ensures the mutual repulsion at the same z of any pair of chains 
a, 0. It is to be noted that, in this formulation, the z direction gets a special treatment 
compared to the remaining d - 1 coordinates, reflecting the anisotropy of the system. 
Also, a simple dimensional analysis identifies the upper critical dimension as d = 3 
where uo is dimensionless [3]. 

As pointed out already, f determines the density of the walks, playing the role of 
chemical potential for the polymer system. We however prefer to use the canonical 
ensemble with fixed n and fixing the density at the end. We show elsewhere 141 that 
the free energy of WM at a temperature t is equal to the osmotic pressure of the directed 
chains with the correct choice of p as in (1). However, this connection is not crucial 
for this letter. 

The crux of the analysis lies in the recognition that the scaling properties of the 
polymers [17] in the limit of large length N is, in the case at hand, the finite size 
scaling form of SVM as the system approaches the thermodynamic limit. According to 
F S S ,  any quantity, say the free energy, should show a scaling form of the type 

f N ( f )  - N-‘2-”’/’iIS(fN’’” 11) (3) 
for small I because the correlation length in the z direction goes like #11 - f C ” ~ l [  14,16,18]. 
The important point to observe is the appearance of the combination variable fN””11 
in the argument of the scaling function. The connection with the polymer problem is 
through this. 

For polymers each of length N, the osmotic pressure would have been like a perfect 
gas if the chains were non-interacting. But for large chains the interaction cannot be 
ignored and the osmotic pressure ll is expressible in a scaling form through a reference 
density above which overlaps are expected (similar to c* for conventional polymers 
[ 171). This is the density where the average size of a chain is comparable to the average 
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distance between the chains, and is determined quantitatively by the second virial 
coefficient A2 [17], so that the osmotic pressure can be written as 

In the limit N + a, A,- N*, with a new exponent Jr, so that the scaled density variable 
is 

D = pN'. ( 5 )  
For the problem in hand, it is the same N that appears in (3) and (9, in one case 

(3) determining the 'rounding' of the critical behaviour, and in the other case (4) the 
density-dependent crossover from dilute to semidilute regime. Since the density p of 
(4) i s  related to the temperature of (3) by the incommensuration exponent of (l), 
we obtain by comparing the combination variables of both cases 

VI1 = a/ Jr. ( 6 )  
Therefore, the thermodynamic exponent and the vinal coefticient exponent (I deter- 
mine the length scale exponent uII in the z direction. 

The length scale exponent in the transverse direction is the average separation of 
the lines and is therefore determined by (1) as 

a 
UL=- 

d - 1  (7) 

since the density is defined per unit transverse volume. 
The second virial coefficient for directed walks has been determined in [19] through 

a renormalization group (RG) analysis and it is shownt that, for d < 3, at the RG fixed 
point for N + a, (see also [ZO]) 

giving Jr = (d  - 1)/2. Using this value in ( 6 ) ,  we finally get 

as we were set to prove. 
q = 2 U L  ( 9 )  

scope Uf this ieiier 8s it requires ihe caicuiaiion of the os;i-iloiic pressure of ihe many, 
To get the actual values of the exponents, one really needs s, which is beyond the 

chain system. The details are to be published elsewhere [4]; we just quote the final 
result a=  (d -1) /2  as found in [3]. This gives ull = 1 and vL =; for all d <3 .$  

A few comments are in order. 
(1) FSS is based on the hypotheis (or fact) that the length of the system does not 

require any renormalization in an RG approach [16]. It is, therefore, reassuring that 
the length N of the directed chains do -not require any renormalization [19], giving 
further credence to the approach of this paper. 

the upper critical 
dimension, in this case three. This is easily seen for d = 3 because the virial coefficient 
develops a log correction, obtained by solving the exact beta function of [ 191 for E = 0. 
This log term vitiates the connection through FsS, but still if one ignores it, the power 
Laws are conris~eni with the 
are generally the same as at the upper critical dimension, and therefore, we expect (9) 
to be true for all d. 
t Note that d of this paper is d + I of [ 191. 
$1"  an approximate calculation for the flux lattice problem of the high T, superconductors, Ziegler [ZI] 
also obtained U,, = 1 and 

(2) It is known [22]  that FSS in the form (3) is not valid for d 

ehpoiieii~j for ylI pL, FOi d ; 3, the expanenis 

= 112 in three dimensions. ~ 
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(3) The factor of two in equation (9) has a simple explanation through the 
'roughness' exponent U that describes the wandering or size of a chain as N - t m ,  
R - N' (as measured, say, by the mean square end-to-end distance or by the radius 
of gyration). Now, the second virial coefficient of a hard sphere gas goes as the volume 
of the sphere, and therefore for the DRWS we expect A2- Rd-' ,giving $ = ( d - l ) u .  
Using the random walk value, as is applicable for us, U = 112, we recover the exponent 
of (8). This also shows that the general form of (9) for non-Gaussian walks, as may 
be relevant for random lattices, is vu11 = vL a form already suggested by a scaling 
anaiysis [jj. 

(4) The reason behind the superuniversality of the relation (9) lies in  the absence 
of any anomalous dimension for the second virial coefficient. This can further be traced 
to the absence of any self-interaction of the chains, unlike conventional polymers [ 171, 
so that the exponents are determined purely from dimensional analysis as established 
in [19]. This is also a noteworthy feature that comes out of our analysis and not so 
easy io see from ihe avaiiabie exaci soiuiions. 

References 

[ I ]  Wu F Y 1968 Phys Reo. 168 539 

Green (New York Academic) 
:2! !kb E H .%Ed FL! F Y !?72 .%a:. T?ml..i!$.?S ond C:*kcI PkenBme-no YO! I, ed c Domb snd L" s 

Baxler R J 1982 Exactly Solunble Models in Statistical Mechanics (New York: Academic) 
[3] Bhallacharjee S M 1991 €urophys. Lett. I5 815 
[4] Bhallacharjee S M and Rajasekaran J J 1991 Phys. Rev. A in press 
[SI Pokrovrky V Land Talapov A L 1979 Phys. Rev. Lett. 42 65 
[6] Nagle J F 1973 1. Chem. Phys. 58 252 
171 Bhattacharjee S M, Nagle J F, Huse D A and Fisher M E 1983 J. Stat. Phys. 32 361 
[SI lruyama T and Akutru Y 1982 J. Phys. Soc. Japan 51 50 
[91 Nagle J F, Yokoi C S 0 and Bhallacharjee S M 1989 Phose Transitions and Criliral Phenomena YOI 

13, ed C Domb and J L Lebowih (New York: Academic) 
[IO] Kardar M Pmc. 1989 Meeting on New Trends in Magnetism in press 

Kardar M and Zhang Y C 1987 Phys. Rev. Lett. 58 2087 
Cook J and Derrida B 1989 1. Stot. Phys. 57 89 

Nelson D R 1988 Phys. Re". Lett. M) 1973 
1121 Nelson D Rand Seung H S 1989 Phys. Rev. B 39 9153 

[ I l l  Wu Y S 1984 Phys. Rev. Lett. 52 2103 
[I31 Kasleleyn P 1963 J. Math Phys. 4 287 
[I41 Bhallacharjee S M and Nagle J F 1985 Phys. Re". A 31 3199 
[IS] Yokoi C S 0, Nagle J F and Salinas S R 1986 J. Stat. Phys. 44 729 
[I61 Barber M 1982 Phose Transitions and Crilieol Phenomeno voI 8. ed C Domb and M S Green (New 

[ i i j  deGennes P G i979 Scaiing Cooneepis in Poiymer Physics (iihaca, NY: Corneii 'u'niveraiiy Press) 
[I81 Binder K and Wang J-S 1980 1. Stot. Phys. 55 87 
[I91 Rajarekaran J J and,Bhattacharjee S M 1991 J.  Phys. A: Math. Gen. 24 L371 
[20] Duplantier B 1989 Phys. Rev. Lett. 62 2337 
[21] Ziegler K 1989 Europhys. Lett. 9 277 
[22] Brezin E 1982 J.  Physique 43 I 5  

York: Academic) 



L1222 Letter to the Editor 

According to [31 the generating function of the self-avoiding walks defined in 

( 5 )  

T h e  quantity on the right denotes the correlation function of spins on opposite corners 
of a square of ( L +  1)2 classical N-component spins, normalized so that S . S  = N, with 
nearest-neighbour interactions. Since T --t T, in the magnetic system corresponds to 

111 LllC nynKlrL "L bCII-dYVIUIIIg W a l l i s  L,,, m c  rrsull x .  = p , SugpCsKu as a 
strong possibility in [l], follows directly from this correspondence. 

equation ( 1 )  can be expressed as 

C,(X) = ki N-'(S(O, 0) . S ( L ,  L)) .  

x + p - l  :.. .L̂  ..e --,c :.I:-- .....I.. r * ,  & L -  I. . ~ *  ~ I I 

Table 1 .  Total number of walks CL(l) between opposite comers ofthe square and between 
the midpoints of opposite edges. 
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Figure 1. Dependence of CL(lj"L2 (circles) and Ar' ( l j ' 'L  (crosses) on L-',  with L =  
2 , 3 , .  . . , 9 .  The upper and lower sequences of circles correspond to walks between opposite 
comers and the midpoints of opposite edges, respectively. The filled and empty points of 
the lower sequence correspond to even and add L. 


